Rerurn to Romy the Cat's Site


In the Forum: Playback Listening
In the Thread: The centuries old struggle to play in tune
Post Subject: Here is the articlePosted by rowuk on: 6/8/2014
fiogf49gjkf0d

The Wolf at Our Heels

The centuries-old struggle to play in tune.

By 

You are about to enter the Twilight Zone. I submit for your consideration an oddly named book lying on an ordinary desk: How Equal Temperament Ruined Harmony (and Why You Should Care), by professor Ross W. Duffin. This book was written by a madman. Or is he? You should understand: If Duffin is mad, he's not alone. And the spaces between the lines of his book are filled with the silent laughter of the gods.

The gods are laughing at their little joke on musicians. When it comes to the tuning of instruments, especially keyboards and fretted instruments, nature drops a giant hairball in our path. Here's a short course on the arcana of tuning. It will take us to the meaning of a celebrated collection of keyboard pieces: J. S. Bach's The Well-Tempered Clavier, humankind's greatest musical riposte to the laughter of the gods.

In dealing with tuning, there are two main terms to know. One is interval. It means the distance between notes. The basic science of intervals was laid out in ancient Greece, perhaps first by the mathematician Pythagoras. The first notes of the C major scale are C, D, E, F, and G. The note E is the third note up from C, so the interval C-E is a third. The note G is five notes up, so C-G is a fifth. So musical intervals run second, third, fourth, fifth, and so on. (Some intervals can be major, like F to A, or minor, like F to A flat.)

OK? Now, as Pythagoras discovered, intervals are also mathematical ratios. If you take an open guitar string sounding E, stop it with your finger in the middle and pluck, you get E an octave above. The octave ratio, then, is 2:1. If you stop the string in the ratio 3:2, you get a fifth higher than the open string, the note B. The other intervals have progressive ratios; 4:3 is a fourth, and so on.

So far, all very tidy. But this is where things get hilarious. As Pythagoras also realized in mathematical terms, if you start with a C at the bottom of a piano keyboard and tune a series of 12 perfect 3:2 fifths up to the top, you discover that where you expect to have returned to a perfect high C, that C is overshot, intolerably out of tune. In other words, nature's math doesn't add up. A series of perfect intervals doesn't end at a perfect interval from where you started. If you tune three perfect 5:4 major thirds, it should logically add up to an octave, but it doesn't; the result is egregiously flat. It is this innate irreconcilability of pitch that, through the centuries, has driven men mad. Professor Duffin is a living representative of a long line of obsessives. Personal and institutional battles have been fought over the issue of tuning, fame won and lost. It was ever thus, wrestling with the gods.

What all this means in practice is that in tuning keyboards and fretted instruments, you have to screw around with the intervals in order to fit the necessary notes into an octave. In other words, as we say, you have to temper pure intervals, nudge them up or down a hair in some systematic way. Otherwise, you get chaos. So there's the second word you need to remember: The business of adapting tuning to nature's messy math is calledtemperament. And now we're halfway to understanding The Well-Tempered Clavier: It has to do with the art and science of keyboard tuning. We'll get to the wellness in a minute.

There have been some 150 tuning systems put forth over the centuries, none of them pure. There is no perfection, only varying tastes in corruption. If you want your fifths nicely in tune, the thirds can't be; if you want pure thirds, you have to put up with impure fifths. And no scale on a keyboard, not even good old C major, can be perfectly in tune. Medieval tunings voted for pure fifths. By the late Renaissance the tuning systems favored better thirds. The latter were various kinds of meantone temperament. In meantone, most of the accumulated fudges were dumped onto two notes, usually G# (aka A flat) and E flat. The shivery effect of those two notes played together in meantone temperaments earned it the name "wolf," which, like its namesake, was regarded with a certain holy fear.

By and large, in composing music for meantone keyboards you avoided the wolf, so never, for example, wrote in the key of A flat. In fact, those temperaments left only a few keys that were well-enough in tune to be usable: the keys between two flats and three sharps. Between the 16th and 18th centuries a lot of splendid music was written in meantone tuning, within that range of a dozen major and minor keys. But the inability to write in all 24 possible keys ate at composers' guts. More and more, there was a demand for a tuning system that would render all keys usable—and escape the wolf.

One of those tunings was already known to the ancients: equal temperament. Here the poison is distributed equally through the system: The distance between each interval is mathematically the same, so each interval is equally in, and slightly out of, tune. Nothing is perfect; nothing is terrible. So now it's all fixed, yes? The laughter of the gods has been stilled, right? Are you kidding? You fools: The gods never lose.


For centuries, equal temperament didn't catch on because musicians tended not to like it. Even when fretted instruments were invented and lutes and guitars were mostly tuned in equal temperament, they still didn't like it. Most especially, musicians didn't like the fat major thirds of equal temperament, which are way out of tune with nature. They preferred the sweet thirds of meantone temperaments, with all their limitations. For another thing, in meantone each key had an audible personality, from, say, the almost-pure and upstanding C major, suitable to moods of equanimity and celebration, to shadowy C minor, suitable for doubt and despair. Equal temperament leaves every key with exactly the same personality, which was widely felt to be boring. Musicians still preferred, then, the old varieties of what is generically called unequal temperament.

In the late 17th century, tuning geeks came up with a new idea: Let's hair-split all over the keyboard, tweaking this and that in minuscule ways, letting, say, a third be a bit larger in one spot and a bit smaller in another. These kinds of flexible temperaments accomplished several things at once: 1) They made all keys usable; 2) yet they preserved the individual character of keys, because each still had its distinctive collection of intervals; 3) and they tamed the big bad wolf.

Hey, said adherents of this more sophisticated unequal system, this really works well! So they called it well-temperament. One of those adherents was J. S. Bach. He wanted, he said somewhat testily, to write in any damn key he felt like, and he tuned his harpsichord himself to make that possible. When a famous organ tuner who did meantone tuning showed up, Bach would play an A flat major chord on one of his organs with its howling wolf, just to torture the old man.

Bach wrote the preludes and fugues of The Well-Tempered Clavier (clavier meaning any kind of keyboard instrument) not only to show off this improved system but to help make well-temperament mandatory by writing irreplaceable pieces in every key. Anybody who wanted to play from the WTC was pressured to use well-temperament, because many of the pieces sounded sour in any other tuning. (However, heh-heh, there's no precise record of which well-tempered system Bach used.) Here, in a new and gorgeous harpsichord recording of the WTC by Peter Watchorn, is the prelude in Eb minor, a key virtually unheard before Bach, and one that clearly for him (and later for Beethoven) represented piercing sorrow. Watchorn's recording is in the current leading surmise concerning Bach's temperament:

The various kinds of meantone and well-temperament help explain why, in the 18th into 19th centuries, keys had particular emotional associations. Key descriptions of the time sound outlandish, and indeed some were on the loony side, but they were founded on the reality that in unequal temperaments each key had its distinctive color and personality. "Is something gay, brilliant, or martial needed?" wrote one theorist. "Take C, D, E [majors]." Another: "D major … the key of triumph, of Hallelujahs, of war-cries, of victory-rejoicing." All those keys were relatively well in tune on the keyboard. Minor keys were innately less in tune, so darker in sound and import: G minor, for example, is "suited to frenzy, despair, agitation. ... The lament of a noble matron who no longer has her youthful beauty." You want a pretty pastoral piece? You want a relaxing key like F major—the key of Beethoven's Pastoral Symphony:

Two of Beethoven's favorite keys tell us a lot about him. The most famous is C minor, described by one writer of the time as "a tragic key … fit to express grand misadventures, deaths of heroes, and grand but mournful, ominous, and lugubrious actions." That's close to how Beethoven interpreted it in the Third and Fifth Symphonies, and in the Pathètique piano sonata, here played by Andras Schiff on a modern equal-tempered Steinway:

On the other hand, in the prevailing unequal temperaments there was still the presence, or at least the ghost, of the old wolf. Thus, croaked one theorist concerning that key, "Death, grave, putrefaction, judgment, eternity lie in its radius." Beethoven studied the theorists carefully, then did what he wanted. As for the putrefaction of A flat major: baloney. For Beethoven, that key, with its complex and distinctive coloration, suggested feelings in the direction of nobility, devotion, and resignation, as in the second movement of the Pathètique, again by Andras Schiff:

When composers stretched for more harmonic variety and tension in the first decades of the 19th century, as a practical matter the once-despised equal temperament won out over unequal tunings, which withered away during the century. But as professor Duffin exemplifies in How Equal Temperament Ruined Harmony, many tuning geeks today still find that temperament loathsome. Actually, Duffin's book is less rabid than its title sounds, amounting to a plea for playing keyboard music through the early 19th century in period tunings, especially in one called "sixth-comma meantone," which Duffin believes is the tuning Bach had in mind for the Well-Tempered Clavier. His reasoning is of Glenn Beckian deviousness. Some claim to find a cabalistic clue to Bach's intended tuning, close to sixth-comma, in the curlicues at the top of his title page for the WTC:

1_123125_2066611_2241276_2249537_100415_mb_image

That idea may be nuts, or not. Bach was into puzzles, numerology, and all kinds of musical cabala, so the nuttiest idea of all about his tuning might well be right. It would figure. Listen to Watchorn in the curlicue tuning—or rather a theory about it—in the C# Major Prelude, one of the world's most happy-making pieces. This is another key out of the pale in older temperaments:

How do the travails of keyboard temperament apply to instruments without fixed tuning, like violins, trombones, flugelhorns, and the human voice? They don't apply at all. Most of the time violinists, et al., tune by ear, on the fly, note by note, and chord by chord. That's why a string quartet or an a cappella choir can be better in tune with nature than a guitar or a piano can. As a high-school trombonist playing with a piano for the first time, I found adjusting to keyboard tuning a pain in the neck—without knowing why. String recitalists know that pain intimately. Meanwhile, an orchestra is made of a bunch of instruments, some of which tune naturally by ear—strings, woodwinds, brass—but also instruments in fixed, equal temperament: harp, marimbas and xylophones, harpsichord and piano, etc. What do orchestras do to harmonize all those conflicting demands? They do the best they can and try not to think about it too much. It can make you crazy.

I think professor Duffin is entirely rational in advocating period tunings when possible to play repertoire written for those tunings—for the same reason that it's good to hear period instruments sometimes, for pleasure and edification. Yet to date there are few recordings in period tunings. Even most recordings from the Historically Informed Performance, aka HIP, movement use equal temperament. I'd go so far as to suggest that performances on period instruments in modern tuning are half-assed, or half-HIPped, if you like. As tuning activist Kyle Gann says on his Web site, "Playing Bach's Well-Tempered Clavier in today's equal temperament is like exhibiting Rembrandt paintings with wax paper taped over them." Still, nobody can reasonably claim that piano works after the early 19th century should be played in other than the equal temperament they were written in. Says my Boston Conservatory colleague Jim Dalton, himself more equal-tempered than many aficionados, "Equal temperament is the price we pay for all the marvelous modulations and exotic scales" from Schumann through Debussy to the present.

Ah, but the metaphysical laughter is still there, even between these very lines you are reading. One of the few pianists who have recorded in period tunings (on a modern Steinway) is Enid Katahn. Let's compare two clips. First, here's the finale of Beethoven'sPathètique in equal temperament, by Andras Schiff:

Now here's Katahn on the same, in an early-19th-century tuning called Prinz, from her recording Beethoven in the Temperaments:

Now an existential question: People have been at the point of murder over those two tunings, but can you tell the difference? Can you really? Some of you can, certainly. Some of you who think you can are fooling yourselves. And most of you can't tell the difference. Here are two short clips from the above, juxtaposed, first Schiff then Katahn. Maybe this way you'll get a whiff of what the fuss is about.

In any case, we're stuck in the Twilight Zone. The anomalies of tuning are the musical equivalent of the uncertainty principle in physics, which says that you can tell where an electron is located or how fast it's moving, but not both at the same time. Another example of the gods' sense of humor. For me, it's all a clue to the nature of the gods, which Pythagoras and the Greeks understood supremely well: The masters of the universe don't make much more sense than we do, but they are all-powerful and they sure love to play with our heads.

And so, professor Duffin, ladies and gentlemen, and the gods: From Greeks to geeks, do I care about all this meshugas? In some respects, I don't want to think about it. If I start obsessing over the fat major thirds in equal temperament, they might drive me crazy, too. As if I, and all musicians, don't have enough trouble already. Nonetheless, I yearn to hear Beethoven's A flat major and E flat minor on a period piano, in a tuning he knew. And Bach's WTC sounds weller in real well-temperament. I wish HIPsters out there would get busy and fix their period instruments in tunings Bach wouldn't scoff at.

Rerurn to Romy the Cat's Site